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We report on the first global QCD analysis of the quark transversity distributions in the nucleon from

semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested

sampling and constraints on the isovector tensor charge gT from lattice QCD. A simultaneous fit to the

available SIDIS Collins asymmetry data is compatible with gT values extracted from a comprehensive

reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller

gT values. The contributions to the nucleon tensor charge from u and d quarks are found to be δu ¼ 0.3ð2Þ

and δd ¼ −0.7ð2Þ at a scale Q2 ¼ 2 GeV2.
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Along with the unpolarized (f1) and helicity-dependent

(g1) parton distribution functions (PDFs), the transversity

distribution (h1) completes the full set of quark PDFs that

characterize the collinear structure of the nucleon at leading

twist. While considerable information has been accumu-

lated on the first two distributions from several decades

of deep-inelastic scattering (DIS) and other high-energy

experiments [1–4], comparatively little is known about the

transversity PDFs. The transversity PDF, h
q
1
ðxÞ, gives the

distribution of a transversely polarized quark q carrying

a momentum fraction x in a transversely polarized nucleon,

and its lowest moment, δq≡
R

1

0
dx½hq

1
ðxÞ − h

q̄
1
ðxÞ�, gives

the nucleon’s tensor charge for quark q [5–11]. In addition

to providing fundamental information on the quark spin

structure of the nucleon, the tensor charge also plays an

important role in constraining hadronic physics back-

grounds in probes of physics beyond the standard model

[12–14].

Compared with the chiral-even f1 and g1 PDFs, the

experimental exploration of the chiral-odd h1 is consid-

erably more involved, requiring the coupling of the trans-

versity distribution to another chiral-odd function [6].

Observables sensitive to transversity include the Collins

single-spin asymmetries in semi-inclusive deep-inelastic

scattering (SIDIS), where h1 couples to the chiral-odd

Collins fragmentation function (FF) H⊥
1

[15], while two

Collins FFs generate an azimuthal asymmetry in two-

hadron production in eþe− annihilation [16].

Several previous analyses have attempted to extract the

transverse momentum dependent (TMD) transversity dis-

tributions from both SIDIS and eþe− data. Anselmino et al.

[17–19] employed a factorized Gaussian ansatz to relate the

TMDdistributions to the h
q
1
PDFs, while Kang et al. [20,21]

used, in addition, theTMDevolution formalism [22]. In both

cases, the x dependence of h
q
1
ðxÞwas parametrized in terms

of the sum of unpolarized and helicity distributions at

the initial scale. Working within collinear factorization,

Bacchetta et al. [23–25] also extracted transversity PDFs

frompion pair production in SIDIS using dihadron FFs from

eþe− data. These analyses gave values for the isovector

moment gT ≡ δu − δd in the range 0.4–1, with sizeable

(30%–50%) uncertainties. In all of these studies, the

experimental coverage was restricted to the region

0.02≲ x≲ 0.3, so that the determination of the full moment

required extrapolation outside the measured range.

Complementing the challenging empirical extractions of

transversity, first-principles lattice QCD calculations can

provide additional information on the nucleon transverse

spin structure. While recent breakthroughs in quasi-PDFs

have allowed the first direct lattice computations of the x
dependence of transversity [26,27], calculations of

moments of the isovector h
q
1
PDF are more developed,
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with a number of simulations of gT having been performed

[28–34] at physical pion masses and with multiple lattice

spacings and volumes. No significant contamination from

excited states has been observed, along with very mild

volume and lattice spacing dependence, making gT a

“golden” channel in lattice nucleon structure studies.

Curiously, however, all of the simulations give values of

gT close to unity, in contrast to the phenomenological

values, which are generally smaller [10,21], with central

values ∼0.5–0.6. This prompts the question of whether the

systematic differences between the lattice and phenomeno-

logical results suggest a real tension between the two. From

the uncertainties found by Kang et al. [21], for example,

one would conclude that after the inclusion of data from the

future SoLID experiment at Jefferson Lab [10], the phe-

nomenological values of gT would be incompatible with

lattice at more than 5σ C.L.

In this Letter, we address the question of whether

the experimental data on transversity are compatible

with the lattice gT results—whether there indeed is a

“transverse-spin puzzle,” as suggested by some of the

previous analyses [10,21]—by using the lattice data on

gT as an additional constraint on the global QCD analysis

of transversity. We implement several important improve-

ments over previous analyses, making use of a more

robust fitting methodology based on Monte Carlo (MC)

sampling methods. Specifically, we use the nested sam-

pling algorithm [35–37], which maps the likelihood

function into an MC-weighted parameter sample and

allows a rigorous determination of PDF uncertainties.

This approach improves the fitting methodology of

Refs. [20,21] by allowing more flexible parametrizations

of the initial conditions of the transversity and Collins FFs.

Similar MC-based methods have recently been used to

analyze collinear PDFs [38,39] and FFs [39,40], but they

have never before been applied to TMDs.

To begin with, we revisit the existing lattice QCD

simulations of gT to obtain a reliable averaged data point

that can be used in the global QCD analysis. One challenge

is that the various lattice calculations estimate systematic

uncertainties differently, making it problematic to simply

average the reported values. We instead combine the

available dynamical simulation data, using only calcula-

tions with multiple lattice spacings, volumes and quark

masses; we use several procedures to ensure that the final

uncertainties are not underestimated.

There are three available data sets that meet these

criteria: the PNDME Collaboration results with Nf ¼ 2þ
1þ 1 flavors [28], the RQCD Collaboration data with

Nf ¼ 2 [33], and the LHPC set with Nf ¼ 2þ 1 [30]. Cuts

on the data are imposed for pion masses m2
π < 0.12 GeV2

and for mπL > 3, where L3 is the lattice volume, to control

the chiral and infinite-volume extrapolations. Since all of

the lattice simulations show a mild dependence on the

volume and lattice spacing a, the simplest approach is to

extrapolate gT considering only the mπ dependence.

Extrapolating the data either linearly in m2
π or including

chiral logarithms (∼m2
π lnm

2
π), as predicted from chiral

effective theory [41,42], gives glattT ¼ 1.006ð22Þ.
To further include uncertainties from taking the con-

tinuum limit, we assign a different lattice discretization

extrapolation coefficient for each simulation [28,30,33].

To account for the different actions, we use OðaÞ for the
PNDME and LHPC results, and Oða2Þ for RQCD. For the
volume dependence, we consider both emπL and m2

πe
mπL

forms. Taking all possible combinations then gives 12

distinct fitting formulas for the continuum extrapolation

of gT . The results of these fits are combined using theAkaike

information criterion, AIC ¼ 2kþ χ2, where k is the num-

ber of free parameters in the fit and χ2 is theminimum sumof

squared fit residuals. Each fit is weighted by the factor

wi¼Pi=ð
P

jPjÞ, where Pj¼exp½−ðAICj−minAICÞ=2�,

which yields glattT ¼ 1.008ð56Þ.
Another approach is to average the lattice data using

methods advocated by the Flavor Lattice Averaging Group

(FLAG) [43]. However, given that most extrapolations of

nucleon matrix elements do not explicitly control finite

volume and lattice spacing systematics, such an averaging

will be dominated by results with the most optimistic

systematic uncertainty estimates. We extrapolate each

group’s data using a single, universal formula, assuming

linear dependence on m2
π , e

mπL and a (or a2), and then

perform a weighted analysis as in the FLAG approach. The

result is glattT ¼ 1.00ð5Þ, which is consistent with the above

estimate. To be conservative, we take the larger uncertainty,

glattT ¼ 1.01ð6Þ, as the final averaged value to be used in the
global analysis.

For the experimental data used in our fit, we consider the

sinðϕh þ ϕsÞ modulation of the differential SIDIS cross

section, or Collins asymmetry,

A
sinðϕhþϕsÞ
UT ¼

2ð1 − yÞ

1þ ð1 − yÞ2
F
sin ðϕhþϕsÞ
UT

FUU

; ð1Þ

where ϕh and ϕs are the azimuthal angles for the transverse

momentum of the produced hadron h and the nucleon spin

vector with respect to the lepton plane in the virtual

photon–nucleon center of mass frame, and y is the frac-

tional energy loss of the incident lepton. The structure

functions FUU and F
sin ðϕhþϕsÞ
UT are functions of the Bjorken

variable x ¼ Q2=2P · q, the hadron momentum fraction

z ¼ P · Ph=P · q, and the hadron transverse momentum

Ph⊥, where P, Ph and q are the four-momenta of the target,

produced hadron, and exchanged photon, respectively,

and Q2 ¼ −q2. For Ph⊥ ≪ Q these can be written as

convolutions of the unpolarized f
q
1
TMD PDF and unpo-

larized D
h=q
1

TMD FF, and the TMD transversity PDF h
q
1

and H
⊥h=q
1

(Collins) FF, respectively,
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FUU ¼ Cðf1 ⊗ D1Þ; ð2Þ

F
sin ðϕhþϕsÞ
UT ¼ C

�

ĥ · p⊥

zmh

⊗ h1 ⊗ H⊥
1

�

; ð3Þ

where C is the standard TMD convolution operator [44], ĥ

is a unit vector along Ph⊥, and p⊥ is the transverse

momentum of h with respect to the fragmenting quark.

The TMD PDFs depend on x and the parton transverse

momentum k⊥, while the FFs depend on z and p⊥, with

their Q2 dependence governed by the Collins-Soper equa-

tions [22,45]. The existing data on Collins asymmetries

have very mild dependence on Q2 and are compatible

with no evolution [21,46]. For the parametrization of the

unpolarized and transversity TMD PDFs, we follow

Refs. [17–19] in adopting a factorized form,

fqðx; k2⊥Þ ¼ fqðxÞGq
fðk

2

⊥Þ; ð4Þ

where the generic function fq ¼ f
q
1
or h

q
1
, and the k2⊥

dependence is given by a Gaussian distribution,

G
q
fðk

2

⊥Þ ¼
1

πhk2⊥i
q
f

exp

�

−
k2⊥

hk2⊥i
q
f

�

: ð5Þ

The transverse widths hk2⊥i
q
f are in general flavor depen-

dent, and can be functions of x, although here we assume

their x dependence is negligible. For the TMD FFs, the

unpolarized distribution is parametrized analogously,

D
h=q
1

ðz; p2

⊥Þ ¼ D
h=q
1

ðzÞGh=q
D1

ðp2

⊥Þ; ð6Þ

while the Collins FF involves an additional z dependent

weight factor,

H
⊥h=q
1

ðz; p⊥Þ ¼
2z2m2

h

hp2

⊥i
h=q

H⊥
1

H
⊥ð1Þ
1h=qðzÞG

h=q

H⊥
1

ðp2

⊥Þ: ð7Þ

The p2

⊥ dependence of the functions G
h=q
D1

and G
h=q

H⊥
1

is

assumed to be Gaussian, in analogy with (5), with the

average hp2

⊥i
h=q independent of z. The z dependence of the

Collins FF is parametrized in terms of its p2

⊥-weighted

moment, H
⊥ð1Þ
1h=qðzÞ [21]. Using the TMD PDFs and FFs in

Eqs. (4)–(7), the P2

h⊥ dependence in the structure functions

is then proportional to exp ð−P2

h⊥=hP
2

h⊥i
h=q
f;DÞ, where

hP2

h⊥i
q
f;D ¼ z2hk2⊥i

q
f þ hp2

⊥i
h=q
D .

Our global analysis fits SIDIS π� production data from

proton and deuteron targets, including their x, z, and Ph⊥

dependence, with a total of 106 data points from the

HERMES [47] and COMPASS [48,49] experiments.

This gives four linear combinations of transversity TMD

PDFs and Collins TMD FFs for different quark flavors,

from which we extract the u, d, and antiquark transversity

PDFs (from four x-dependent combinations) and the

favored and unfavored Collins FFs (from four z-dependent
combinations), together with their respective transverse

momentum widths (from the Ph⊥ dependence). We do not

include lower-energy Collins asymmetry data from

Jefferson Lab on 3He nuclei because of concerns about

the separation of the current and target fragmentation

regions at relatively low energies [50].

In selecting the data to be used in the fit, we place several

kinematic cuts on the z,Ph⊥, andQ
2 dependencies in order to

isolate samples where the theoretical framework used in this

analysis is applicable. To stay within the current fragmenta-

tion region, only data for z > 0.2 are included, and to

avoid contamination from vector-meson production and

soft-gluon effects, we exclude data above z ¼ 0.6. For the

Ph⊥ dependence, we exclude the regions where Ph⊥ is very

small (Ph⊥ > 0.2 GeV) or very large (Ph⊥ < 0.9 GeV): the

former to avoid acceptance issues for the lowest-Ph⊥ bin of

the HERMES multiplicity data, and the latter to ensure the

applicability of the Gaussian assumption, without the need

for introducing the Y term [50]. To stay above the charm

threshold, we restrict ourselves to Q2 > m2
c.

Because the existing SIDIS Collins asymmetry data have

a rather small Q2 range, and Q2 evolution effects tend to

cancel in ratios, there is no clear empirical indication of

scale dependence in the asymmetries. It is a reasonable

approximation, therefore, to neglect the Q2 dependence in

the F
sinðϕhþϕsÞ
UT structure function, and freeze the scale in the

unpolarized f
q
1
andD

q
1
distributions in FUU at a valueQ2 ¼

2 GeV2 that is typical of SIDIS data. (In contrast, since

eþe− data are taken at higher energies, neglecting the scale

dependence between the eþe− and SIDIS measurements

would introduce uncontrolled errors from not including the

full TMD evolution where its effects may be important).

In determining the transversity TMDs h
q
1
ðx; k2⊥Þ, we

parametrize the x dependence by the form h
q
1
ðxÞ ¼

Nqx
aqð1 − xÞbq for each of the flavors q ¼ u, d, and q̄,

assuming a symmetric sea, hū
1
¼ hd̄

1
¼ hs

1
¼ hs̄

1
, and use

isospin symmetry to relate the distributions in the proton

and neutron. For the Collins π� distributions, we use a

similar functional form to parametrize the z dependence of

the favored H
⊥ð1Þ
1ðfavÞ ≡H

⊥ð1Þ
1πþ=u

¼ H
⊥ð1Þ

1πþ=d̄
FFs and the unfa-

vored H
⊥ð1Þ
1ðunfÞ FFs for fd; ū; s; s̄g → πþ, with the distribu-

tions for π− related by charge conjugation. For the x

dependence of the spin-averaged f
q
1
distributions we use

the CJ15 leading-order parametrization [51], while for the z

dependence of D
q
1
, we utilize the leading-order DSS fit

[52]. Choosing a different FF parametrization would not

affect the results significantly, as changes in the z depend-
ence of the FFs could be compensated by modified widths

in the Gaussian Ph⊥ distributions.
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For the transverse-momentum widths hk2⊥i
q
f of the TMD

PDFs f
q
1
and h

q
1
, two Gaussian widths are used, one for the

valence type (q ¼ u, d) and one for the sea-quark type

(q ¼ ū; d̄; s; s̄) functions. Similarly, for the TMD FFs two

Gaussian widths for hp2

⊥i
h=q
D are used, for the favored (such

as u or d̄ to πþ) and unfavored (ū or d to πþ) type of FF.

In total, we therefore have 23 parameters to be extracted

from data, 19 of which describe F
sinðϕhþϕsÞ
UT and 4 for the

transverse part of FUU. To determine the latter, we perform

an independent fit to the HERMES π� and K� multiplicity

data [53], which include 978 data points that survive the

same cuts as employed for A
sinðϕhþϕsÞ
UT .

Using the nested sampling MC algorithm [35–37], we

compute the expectation value E[O] and variance V[O],

E½O� ¼

Z

dnaPðajdataÞOðaÞ ≃
X

k

wkOðakÞ; ð8aÞ

V½O� ¼

Z

dnaPðajdataÞðOðaÞ − E½O�Þ2

≃

X

k

wkðOðakÞ − E½O�Þ2; ð8bÞ

for each observable O (such as a TMD or a function of

TMDs), which is a function of the n-dimensional vector

parameters a with probability density PðajdataÞ [40].

Using Bayes’ theorem, the latter is given by

PðajdataÞ ¼
1

Z
LðdatajaÞπðaÞ; ð9Þ

where πðaÞ is the prior distribution for the vector param-

eters a, and

LðdatajaÞ ¼ exp

�

−
1

2
χ2ðaÞ

�

ð10Þ

is the likelihood function, with Z ¼
R

dnaLðdatajaÞπðaÞ
the Bayesian evidence parameter. Using a flat prior, the

nested sampling algorithm constructs a set of MC samples

fakg with weights fwkg, which are then used to evaluate

the integrals in Eqs. (8).

The results of the fit indicate good overall agreement

with the Collins πþ and π− asymmetries, as illustrated in

Fig. 1, for both HERMES [47] and COMPASS [48,49]

data, with marginally better fits for the latter. The χ2=datum
values for the πþ and π− data are 28.6=53 and 40.4=53,

respectively, for a total of 68.9=106 ≈ 0.65. The larger χ2

for π− stems from the few outlier points in the x and z
spectra, as evident in Fig. 1. The SIDIS-only fit is almost

indistinguishable, with χ2SIDIS ¼ 69.2. Clearly, our MC

results do not indicate any tension between the SIDIS data

and lattice QCD calculations of gT , nor any “transverse spin
problem.”

The resulting transversity PDFs hu
1
and hd

1
and Collins

favored and unfavored FFs, H
⊥ð1Þ
1ðfavÞ and H

⊥ð1Þ
1ðunfÞ, are plotted

in Fig. 2 for both the SIDIS-only and SIDISþ lattice fits.

The positive (negative) sign for the u (d) transversity PDF

is consistent with previous extractions, and correlates with

the same sign for the Collins FFs in the region of z directly

constrained by data. The larger jhd
1
j compared with jhu

1
j

reflects the larger magnitude of the (negative) π− asym-

metry than the (positive) π− asymmetry. At lower z values,
outside the measured region, the uncertainties on the

Collins FFs become extremely large. Interestingly, inclu-

sion of the lattice gT datum has very little effect on the

central values of the distributions, but reduces significantly

the uncertainty bands. The fitted antiquark transversity is

consistent with zero, within relatively large uncertainties,

and is not shown in Fig. 2.

For the transverse momentum widths, our analysis of the

HERMES multiplicities [53] gives a total χ2=datum of

1079=978, with hk2⊥i
q
f1
¼0.59ð1ÞGeV2 and 0.64ð6Þ GeV2

for the unpolarized valence and sea quark PDF widths,

and hp2

⊥i
π=q
D1

¼ 0.116ð2Þ GeV2 and 0.140ð2Þ GeV2 for the

FIG. 1. A comparison of the full SIDISþ lattice fit with the πþ

(filled circles) and π− (open circles) Collins asymmetries

A
sinðϕhþϕsÞ
UT from HERMES [47] and COMPASS [48,49] data

(in percent), as a function of x, z, and Ph⊥ (in GeV).

FIG. 2. Transversity PDFs hu;d
1

and favored zH
⊥ð1Þ
1ðfavÞ and

unfavored zH
⊥ð1Þ
1ðunfÞ Collins FFs for the SIDIS þ lattice fit (red

and blue bands) at Q2 ¼ 2 GeV2, compared with the SIDIS-only

fit uncertainties (yellow bands). The range of direct experimental

constraints is indicated by the horizontal dashed lines.
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unpolarized favored and unfavored FF widths. These values

are compatible with ones found in the analysis by

Anselmino et al. [54] of HERMES and COMPASS charged

hadron multiplicities. On the other hand, the similar values

found for the sea and valence PDF widths disagree with the

chiral soliton model [55], for which the sea to valence ratio

is ∼5. Note also that while there appear some incompa-

tibilities between the x dependence of the HERMES and

COMPASS Ph⊥-integrated π� multiplicities, our analysis

uses only Ph⊥-dependent HERMES data that are given in

bins of x, z, Q2, and Ph⊥.

The transverse momentum widths for the valence and

sea transversity PDFs are hk2⊥i
q
h1
¼ 0.5ð2Þ GeV2 and

1.0ð5Þ GeV2, respectively, and hp2

⊥i
π=q

H⊥
1

¼ 0.12ð4Þ GeV2

and 0.06ð3Þ GeV2 for the favored and unfavored Collins

FF widths, respectively. The relatively larger uncertainties

on the h1 and H⊥
1
widths, compared with the unpolarized

widths, reflect the higher precision of the HERMES

multiplicity data, and the order of magnitude smaller

number of data points for the Collins asymmetries.

Integrating the transversity PDFs over x, the resulting

normalized yields from our MC analysis for the δu and δd
moments are shown in Fig. 3, together with the isovector

combination gT . The most striking feature is the signifi-

cantly narrower distributions evident when the SIDIS data

are supplemented by the lattice gT input. The u and d tensor

charges in Fig. 3(a), for example, change from δu ¼
0.3ð3Þ → 0.3ð2Þ and δd ¼ −0.6ð5Þ → −0.7ð2Þ at the scale
Q2 ¼ 2 GeV2, while the reduction in the uncertainty is

even more dramatic for the isovector charge in Fig. 3(b),

gT ¼ 0.9ð8Þ → 1.0ð1Þ. The earlier single-fit analysis of

SIDIS data by Kang et al. [21] quotes δu ¼ 0.39ð11Þ and
δd ¼ −0.22ð14Þ, with gT ¼ 0.61ð25Þ at Q2 ¼ 10 GeV2, in

apparent tension with the lattice results. This can be

understood from Fig. 3(b), which demonstrates that the

peak of the SIDIS-only distribution at gT ∼ 0.5 is consistent

with the lower values found in earlier maximum likelihood

analyses [10,21], but does not give a good representation

of the mean value because of the long tail of the gT
distribution.

Future extensions of this work will explore incorporating

TMD evolution via the CSS framework [22,56], and the

improved treatment of the large-Ph⊥ contributions through

the addition of the Y term [50]. The inclusion of K� SIDIS

and eþe− annihilation data will allow further separation of

sea quark flavor contributions to h1 and better constraints

on the favored and unfavored Collins FFs. Upcoming high-

precision data from Jefferson Lab should also provide

significantly improved kinematical coverage at intermedi-

ate x and z values.
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